mesmer.stats.inverse_yeo_johnson_transform#
- mesmer.stats.inverse_yeo_johnson_transform(yearly_pred, monthly_residuals, lambda_coeffs)#
apply the inverse power transformation using the fitted lambdas.
- Parameters:
yearly_pred (
xr.DataArray
of shape (n_years, n_gridcells)) – yearly values used as predictors for the lambdas.monthly_residuals (
xr.DataArray
of shape (n_years, n_gridcells)) – The data to be transformed back to the original scale.lambda_coeffs (
xr.DataArray
) – The parameters of the power transformation of shape (months, coeff, n_gridcells) for each gridcell, calculated usinglambda_function
.
- Returns:
xr.Dataset
– Dataset containing the inverted monthly residuals and the parameters of the power transformation for each gridcell.
Notes
The inverse of the Yeo-Johnson transformation is given by:
- if \(X_{trans} \leq 0\) and \(\lambda = 0\):
\(X_{inv} = exp(X_{trans}) - 1\)
- elif \(X_{trans} \leq 0\) and \(\lambda \neq 0\):
\(X_{inv} = (X_{trans} \cdot \lambda + 1)^{\frac{1}{\lambda} - 1}\)
- elif \(X_{trans} < 0\) and \(\lambda \neq 2\):
\(X_{inv} = 1 - ((\lambda - 2) \cdot X_{trans} + 1)^{\frac{1}{2 - \lambda}}\)
- elif \(X_{trans} < 0\) and \(\lambda = 2\):
\(X_{inv} = 1 - exp(-X_{trans})\)
Note that \(X_{inv}\) and \(X_{trans}\) have the same sign.