mesmer.stats.fit_yeo_johnson_transform#
- mesmer.stats.fit_yeo_johnson_transform(yearly_pred, monthly_residuals, time_dim='time')#
estimate the optimal coefficients for the parameters \(\lambda\) for each gridcell, to normalize monthly residuals conditional on yearly predictor. Here, \(\lambda\) depends on the yearly predictor according to
lambda_function
. The optimal coefficients for the lambda parameters for minimizing skewness are estimated on each gridcell independently using maximum likelihood.- Parameters:
yearly_pred (
xr.DataArray
of shape (n_years, n_gridcells)) – yearly values used as predictors for the lambdas.monthly_residuals (
xr.DataArray
of shape (n_years*12, n_gridcells)) – Monthly residuals after removing harmonic model fits, used to fit for the optimal transformation parameters (lambdas).time_dim (str, optional) – Name of the time dimension in the input data used to align monthly residuals and yearly predictor data (needs to be the same in both).
- Returns:
lambda_coeffs (xr.DataArray) – DataArray containing the estimated coefficients needed to estimate lambda with dimensions (months, coeff, n_gridcells).